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LETTER TO THE EDITOR 

Replica symmetry breaking in finite connectivity systems: 
a large connectivity expansion at finite and zero temperature 

C De Dominicis and Y Y Goldschmidtt 
Service de Physique ThCoriqueS de Saclay, F-91191 Gif-sur-Yvette Cedex, France 

Received 8 June 1989 

Abstract. Parisi replica symmetry breaking is extended to random bond systems with finite, 
fixed connectivity ( M  + 1). The free energy f is explicitly calculated for large M within 
the first stage of symmetry beaking. At finite temperature T, the 1 / M  expansion is found 
to diverge as  T+O. Indeed, direct evaluation at zero temperature shows that the large M 
expansion is in powers of l / m .  Introduction of symmetry breaking brings the value of 
fclose (-1% for 10 < M < 20) to numerical estimates of Banavar et al. The same techniques 
apply to systems with average finite connectivity. 

1. Introduction 

Much interest has recently been devoted to the theory of randomly frustrated systems 
(particularly spin glasses) on lattices with jinite connectivity. Indeed those systems 
are closer in nature to real spin glasses because of the finite valence nature of the 
lattice. Besides, such systems are directly connected to some well known optimisation 
problems (graph partitioning, colouring, etc,). Nevertheless they preserve many of the 
simplifying features of a mean-field theory because small loops are very improbable. 

Previous treatments of such systems, except for the immediate vicinity of T,, the 
transition temperature, or exactly soluble models§, have been confined within the 
framework of replica symmetry (i.e. assuming a single thermodynamic state) although 
evidence has been accumulating (Viana and Bray 1985, Mottishaw 1987, Mottishaw 
and De Dominicis 1987, Goldschmidt 1988a, de Almeida et al 1988) that replica 
symmetry (RS) has to be broken in many of the cases under consideration. 

In order to go beyond and evaluate precisely the free energy of the systems both 
at jinite and zero temperature, we have used an expansion in 1 /M where M + 1 is the 
connectiuity. This is the analogue of the l /d  expansion for real lattices. The method, 
at least at finite T, can be extended to hypercubic lattices, but this problem will not 
be pursued further herell. 

t Permanent address: Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, 
USA. 
S Laboratoire de I'Institut de Recherche Fondamentale du Commissariat B I'Energie Atomique. 
9 That is, when the random bond is not between doublets but between p-plets, p + 03 as in the model of 
Derrida (1980). This case is treated by De Dominicis and Mottishaw (1987~). 
1) Upon completion of this work we learned that George, MCzard and Yedidia, at the ENS, are working on 
the l / d  expansion for the spin glass on the hypercubic lattice at finite temperature. 

0305-4470/89/ 160775+07%02.50 @ 1989 IOP Publishing Ltd L775 
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In this paper we consider two models: 
(i) random lattices with aueragefinite connectiuity, with a bond distribution as in 

Viana and Bray, 

a 
W J )  = 1 -- S ( J ) + - p ( J )  

N 

where p ( J )  is normalised; 
(ii) random lattices with fixed connectivity a = M + 1, and a bond distribution p ( J ) .  
As an alternative to model (ii) one may consider the spin glass on a Bethe lattice 

but in this case boundary conditions play an important role t. 
For these models it is possible to systematically develop successive stages of RS 

breaking both at finite and zero temperature in the large a or M expansion. 
Model (ii) is more closely related to hypercubic lattices (Katsura (1986) has shown 

that the equations involved are identical to the Bethe approximation on such a lattice). 
Also in this case, there exist numerical results with which we can make comparison. 
For these reasons, we first concentrate on this fixed connectivity model: RS breaking 
is considered at finite T in § 2, and at zero T in § 3. The 1/M expansion is found to 
diverge as T + 0, signalling what is found by working directly at T = 0, namely that it 
really is a l/m expansion. Comparison with numerical results shows improvement 
when RS breaking is introduced. Finally in § 4 we indicate how to treat model (i) of 
auerage finite connectivity. 

2. Fixed connectivity finite temperature 

Mottishaw has shown that the system can be described by the global order parameter 
g ( { a a ) )  (De Dominics and Mottishaw 1986, 1987a, b) satisfying 

where U,, a = 1,2, .  . . , n, are the replicated spin variables and M + 1 is the con- 
nectivity$. At finite temperature gn can be parametrised in the form 

00 

with 

b, =(coshn PJ tanh'PJ) 

p (I ) = f ( 6 (I + JO) + 6 ( J  - Io) ) 

(3 1 
the averaging being with respect to p(J ) .  In the rest of the paper we use for simplicity 

(4) 

t The random lattice is locally similar to the Bethe lattice (small loops are rare) but it has no boundaries 
whereas the Bethe lattice does. It has been shown (Chayes er a1 1986, Carlson er a1 1988, Lai and Goldschmidt 
1989) that some boundary conditions (e.g. fixed ones) on the Bethe lattice project out only a single 
thermodynamic state. However, there is numerical evidence (Dewar and Mottishaw 1988, Lai and Gold- 
Schmidt 1989) that closing the lattice by identifying different points on the boundary allows many states to 
coexist and leads to a non-trivial overlap function P ( q ) .  
I: Note that our normalisation of g, differs from that of Mottishaw (1987) for finite n. 
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(in the averaged quantities we shall omit the index zero in Jo). It is a feature of finite 
connectivity that one has to consider all qul. , .ur (whereas in the Sherrington-Kirkpatrick 
(Sherrington and Kirkpatrick 1975) limit, as M+co only qulu2 occurs) which satisfy 

We have been able to express the stationary free energy density in terms of g ( { a u } ) :  

pfn = M In Tr g y " ( { u u ) )  
"a 

This free energy is independent of the normalisation of g,. As usual the limit n + 0 is 
to be taken. Variation of (6) with respect to &({Uu}) yields ( l ) ,  up to a normalisation 

The 1 /  M expansion is derived by scaling the coupling J = j / a  and considering 
large M values. This can be done by building g M  from ( 1 )  taken to the mth power 
or using (2) that, together with (3) and ( 4 )  gives, using for shorthand A = pj, 

of gfl. 

and hence 

where q f ,  is the leading term in qms in the 1/M expansion. 
The full expression for g M  will be reported elsewhere (Goldschmidt and De 

Dominicis 1989). Substituting the expression for g M  in the free energy (6) and using 
( 5 )  we get the free energy density pj-5 pfo+pfl/ M + O( 1/ M2) with 

Here pfo coincides with the term derived by Parisi (1980) in the infinite-ranged model 
and p j J M  is the first correction due to finite connectivity. Note that (9) is no longer 
stationary since we have made use of the equation of motion. Note also that the q 
with higher numbers of indices will occur at higher order in the 1/M expansion. 
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(i) RS case. It is easy to evaluate (9) in this case. In figure 1 we plot the free 
energy density f /  Jm against T / J m  for M = 00 and M = 10. We see that the 1 /  M 
correction is well behaved up  to 1 / J m - 0 0 . 2  (where T , / J m =  1.0355); afterwards 
it appears to diverge. We have verified analytically by considering the corrections to 
q2 and q4 away from zero temperature that indeed the 1/M correction diverges as 
P + a. Below we will see that this phenomenon occurs because at T = 0 the expansion 
in large connectivity is in powers of 1m instead of 1/M. Nevertheless the extrapola- 
tion of the finite temperature result to zero temperature yields results consistent with 
those obtained in § 3, directly at T = 0. 

(ii) RS breaking: Since it has been shown (Mottishaw) that the RS solution is 
unstable, we have to break the symmetry. Near T, one can introduce continuous Parisi 
order parameter functions q 2 ( x ) ,  q4(x, y,  z ) ,  etc, and solve in powers of T - T,. In the 
entire temperature range we can obtain a solution up  to a given stage of RS breaking. 
For example, within the first  stage of RS breaking one defines a = ( K ,  y ) ,  K = 
1,2, . . . , n/ m, and y = 1,2 ,  . . . , m. One classifies the values of qml ...m, according to the 
number of spin indices in the same box K,  e.g. for qaloL2 there are two values q2 and 
q l l  (referring to one K box with two spins, and two K boxes with one spin, respectively), 
for qmlmzm3m4 there are five values q4 ,  q Z 2 ,  q31, q 2 1 1 ,  q l l l l  (De Dominicis and Mottishaw 
1 9 8 7 ~ ) .  In this case the global order parameter depends on the spins through U, = 
Ey uKy and satisfies 

x I du, exp(is,u,) exp tanh-'(tanh pJ tanh @U,) 

x exp[(m/2)ln (cosh2 PJ  cosh' @uK -sinh2 PJ sinh2 pu, ) ]  (10) 

where the normalisation X is the same integral with J = 0 in the exponents. 
We found it convenient to introduce the effective field distribution P',"'{h,} Fourier 

transform of g; { is , /P} .  We used it to evaluate the traces in equation (5). For example 
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4:'' satisfies the equation 

and similarly for q\;'t. The order parameters qy) ,  qi;), etc, are given by similar formulae 
but with only q:, qy, appearing on the right-hand side. 

We have evaluated the free energy f (9) to first-stage RS breaking. The value of m 
is then fixed by extremising J: Details will be presented elsewhere (Goldschmidt and 
De Dominicis 1989). 

3. Fixed connectivity zero temperature 

Let us define 

Yfl{XK)'gn{fJK/P) (12) 

and consider (10) as an equation for y,,. The limit p +CO can then be readily taken 
using the relation 

1 
lim - t a n h - ' [ t a n h ( p j / m )  tanh p u K ]  = sgn .? sgn uK min(luK/, lj//m) (13)  p 
where the substitution J=j/m is performed. Again we worked out the case of a 
*J distribution. 

In the RS case one finds 

up to 0(1/M) and 

1 1 
= -0.798 +- 0.106 -- 0.437 +. . . m M 

In the one-step RS breaking the expressions are too long to be given here and will be 
given in detail elsewhere (Goldschmidt and De Dominicis 1989). 

In that case m + 0 as p + 00, but the product y = mp approaches a constant, which 
is determined by extremising the free energy. The final result for the ground-state 
energy density is given by 

1 1 
-0.765 + ~ 0 . 0 1 0 - - 0 . 3 9 0 + 0  EO -- 

J m -  m M 

t Notice the similarity of these expressions to those of M6zard e? a/ (1986) for the infinite-ranged model. 
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Table I .  Various calculations of E , / J m  for different values of M .  

Banavar el a/ Mtzard and Parisi l/m expansion RS One-step RS 
M (1987) (1987) case ( 1  5 )  breaking (16) 

9 -0.792 -0.810 -0.81 1 -0.805 
10 -0.789 -0.809 -0.808 -0.801 
11 -0.786 -0.806 -0.805 -0.797 
19 -0.777 -0.797 -0.783 
20 -0.776 -0.796 -0.782 
00 -0.763 -0.798 -0.798 -0.765 

The leading terms coincide with the Parisi result for the infinite-ranged model in the 
first stage of RS breaking. 

In table 1 we summarise the results from various calculations for E o / J m .  In 
column 1 we give the numerical results of Banavar er a1 (1987), which fit the empiric 
formula (c  = 1.5266): 

1 M + l  C 1 
= -0.763 -- 0.256 + , . . -- - -- - Eo 

~m 2 J ( M - ~ + c * )  M 
in the range 2 6 M 6 20, for which their graph bipartitioning simulations have been 
performed. In column 2 we give the results of MCzard and Parisi (1987) assuming 
replica symmetry and using the three &function solution for P ( h )  (which does not 
include any continuous part). In column 3 we give our results of the 1 / a  expansion 
in the replica symmetric case (15) and in column 4 we display our results with the 
one-step RS breaking equation (16). We see that the one-step RS breaking? results 
approach better the numerical results than the replica symmetric results and the error 
is about 0.8% for M =20 and 1.6% for M =9. 

Note also that the coefficient of the 1 / a  term in the one-step RS breaking (16) 
is 10 times smaller that the coefficient in the RS solution and it may become even 
smaller as more steps of breaking are introduced, thus approaching closer to the empiric 
formula of Banavar et al. We mention that in the fixed connectivity case the cost 
function C of the graph bipartitioning problem is expected to relate to the spin-glass 
ground-state energy density Eo via C /  N = (M + 1)/4+ E0/2J, where N is the number 
of sites in the graph and M + 1 is the fixed connectivity$. 

4. Average connectivity 

Finally let us mention the 1/ M (or l/Jji?) expansion works equally well in the average 
connectivity case. In that case the kernel g,” in equations (1) and (10) is to be replaced 
by exp(M + l)(g, - 1) where M + 1 = LY is the average connectivity. The free energy 
in (6) is to be replaced by equation (3) of Mottishaw and De Dominicis (1987). 

t Previous work on RS breaking in this model has been done by Wong and Sherrington (1988) but they 
considered only the case of low M (2 and 3) with no overlap between the different states of the system, 
unlike our approach. 
$ This relation between the graph partitioning problem and the spin-glass problem has been demonstrated 
in the infinite connectivity case by Fu and Anderson (1986). For finite fixed connectivity it has been argued 
by Mtzard and Parisi (1987) on the basis of the expectation that the effective field distribution is even when 
M +  1 > 2  In 2. 
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The calculations discussed in this paper can also be extended to the Potts spin 
glass (Goldschmidt 1988a, b, Goldschmidt and Lai 1988) which relates to the problems 
of graph q-partitioning and colouring (Lai and Goldschmidt 1987). 
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